Pancreatic cancer

TRACO-2019

Pancreatic Cancer: From Bench to Bedside

Christine Alewine, M.D., Ph.D.
Clinical Translation Unit
Laboratory of Molecular Biology
Center for Cancer Research

Incidence and mortality

Pancreatic Cancer Incidence and Mortality

stimated Deaths				Siegel R et. al.,	CA Cancer J Clin	, 2018
			Males	Females		
Lung & branchus	83,550	26%		Lung & bronchus	79,500	25%
Prostate	29,430	9%		Breast	49,920	14%
Colon & rectum	27,390	8%		Colon & rectum	23,240	8%
Pancreas	23,020	7%		Pancreas	21,310	7%
Liver & intrahepatic bile duct	20,540	6%		Ovary	14,070	5%
Leukamia	14,270	4%		Uterine corpus	11,350	4%
Esophagus	12,850	4%		Leukemia	10,100	4%
Urinary bladder	12,520	4%		Liver & intrahepatic bile duct	9,660	3%
Non-Hodgkin lymphoma	11,510	4%		Non-Hodgkin lymphoma	8,400	3%
Kidney & renal pelvis	10,010	3%		Brain & other nervous system	7,340	3%
All Sites	323,630	100%		All Sites	286,010	100%

- 3rd leading cause of cancer death in the United States
- Median 5 year survival is 9%
- Median overall survival is < 6 months
- Estimated 55,440 new diagnoses and 44,330 deaths in 2018

Deaths annually increasing

Pancreatic Cancer: Second Leading Cause of Cancer-related Deaths by 2030

Rahib, L., et. al., Cancer Res., 74, 2913-21, 2014

Risk factors

Risk Factors

Ryan, Hong and Bardeesy, NEJM, 371, 2014

Variable	Approximate Risl	
Risk factor		
Smoking ^a	2-3	
Long-standing diabetes mellitus ⁴	2	
Nonhereditary and chronic pancreatitis ⁵	2-6	
Obesity, inactivity, or both ⁶	2	
Non-O blood group ⁷	1-2	
Genetic syndrome and associated gene or genes — %		
Hereditary pancreatitis (PRSSI, SPINKI) [®]	50	
Familial atypical multiple mole and melanoma syndrome (p16)°	10-20	
Hereditary breast and ovarian cancer syndromes (BRCAI, BRCA2, PALBZ) 10,11	1-2	
Peutz-Jeghers syndrome (STK11 [LKB1])12	30-40	
Hereditary nonpolyposis colon cancer (Lynch syndrome) (MLH1, MSH2, MSH6) ¹³	4	
Ataxia-telangiectasia (ATM)14	Unknown	
Li-Fraumeni syndrome (P53) ¹⁵	Unknown	

^{*} Values associated with risk factors are expressed as relative risks, and values associated with genetic syndromes are expressed as lifetime risks, as compared with the risk in the general population.

Types and stage

Pancreatic Cancer: Types and Stage at Diagnosis

- Adenocarcinoma (~90%)
- Neuroendocrine (<5%)
- Adenosquamous
- Acinar Cell Carcinoma
- Mucinous cystadenocarcinoma

Early detection

Why can't we detect pancreatic cancer earlier?

- Early symptoms are non-specific
- Current imaging methods rarely detect small lesions
- Difficulty in identifying specific biomarkers
 - Pancreatic Cancer is relatively rare (12.1/ 100,000 persons)
 - Test with 100% sensitivity and 99% specificity => 83 false positive for every real case
- Retroperitoneal positioning of the pancreas makes biopsy difficult
- Risk vs. benefit of removing suspicious pre-cursor lesions

Carbohydrate antigen 19-9

Carbohydrate Antigen 19-9 (CA19-9)

Serum CA19-9 >37 U/ml

Pancreatic Cancer vs Healthy Individual

Sensitivity: 80.3% (95% CI 77.2-82.6)

Specificity: 80.2% (95% CI 78-82.3)

Malignant vs Benign Pancreatic Disease

Sensitivity: 78.2% Specificity: 82.2%

Glypican-1 positive exosomes

Glypican-1 Positive Circulating Exosomes as a Biomarker for PDAC

Carcinogenesis

Progression Model of Pancreatic Carcinogenesis

Pancreatic Intraepithelial Neoplasia

Early stage disease

Early Stage Disease: Surgery + Chemotherapy

Conroy et al, NEJM, 2018

Neoantigen qualities

LETTER

doi:10.1038/nature24462

Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer

Vinod P. Balachandran^{1,2,3}, Marta Łuksza⁴, Julia N. Zhao^{1,2,3}, Vladimir Makarov^{5,6}, John Alec Moral^{1,2,3}, Romain Remark⁷, Brian Herbst², Gokce Askan^{2,8}, Umesh Bhanot⁸, Yasin Senbabaoglu⁹, Daniel K. Wells¹⁰, Charles Ian Ormsby Cary¹⁰, Olivera Grbovic-Huezo², Marc Attiyeh^{1,2}, Benjamin Medina¹, Jennifer Zhang¹, Jennifer Loo¹, Joseph Saglimbeni², Mohsen Abu-Akeel⁹, Roberta Zappasodi⁹, Nadeem Riaz^{6,11}, Martin Smoragiewicz¹², Z. Larkin Kelley^{13,14}, Olca Basturk⁸, Australian Pancreatic Cancer Genome Initiative*, Mithat Gönen¹⁵, Arnold J. Levine⁴, Peter J. Allen^{1,2}, Douglas T. Fearon^{13,14}, Miriam Merad⁷, Sacha Gnjatic⁷, Christine A. Iacobuzio-Donahue^{2,5,8}, Jedd D. Wolchok^{3,9,16,17,18}, Ronald P. DeMatteo^{1,2}, Timothy A. Chan^{3,5,6,11}, Benjamin D. Greenbaum¹⁹, Taha Merghoub^{3,9,18} & Steven D. Leach^{1,2,5,20}§

- Highest neoantigen number
- Abundant CD8⁺ T Cell Infiltrate
- Neoantigen quality promotes T Cell Activity in Long-term survivor

Cancer treatment

Disappointing Progress in the Treatment of Pancreatic Cancer

Von Hoff, D.D. et. al, NEJM, 369, 2013

Wang-Gillam A., et. al., Lancet, 2015

Immune checkpoint blockade

The disappointment of immune checkpoint blockade in pancreatic cancer

* * * *	Cohort-Tumor Type	N*	ORR %	mPFS (mo)	mOS (mo)	
	Overall	471	14	2.2	11.3	
T	Mesothelioma (MPM)	25	20	5.5	18.7	
	Nasopharyngeal Carcinoma	27	26	6.5	16.6	
	Neuroendocrine Carcinomas	16	6	4.5	21	
	Ovarian Epithelial FTC/PPC	25	12	1.9	13.8	
П	Pancreatic ACA	24	0	1.7	3.9	
	Prostate ACA	23	17	3.5	7.9	
	Salivary Gland Carcinoma	26	12	3.8	13.2	
- 1.	SCLC	24	33	1.9	9.7	

Novel immune therapies

Novel immunotherapies- an active area of investigation

- Make "cold" tumor hot by combining with agents that stimulate immune response
 - Radiation
 - Tumor vaccine
 - Oncolytic virus
 - Chemotherapy
- CSF-1R inhibitor: block cytokine signaling to relocate immunosuppressive macrophages
- CD40 agonist: reprogram poorly functioning ADC's
- Block other checkpoints

1/26/2019

Genetic alterations

Gene Alterations in Pancreatic Cancer

Precision medicine

Know Your Tumor: Precision Medicine for PDAC

- N = 640 patients accrued
- Adequate samples for sequencing in >90%
- "50% with actionable mutations (27% highly actionable)"
 - DNA repair genes (BRCA, ~8%)
 - Cell cycle genes (CCND1/2/3, CDK4/6, ~8%)
- · Effect of matched therapy
 - N = 18
 - PFS 4.1 vs. 1.9 m (HR 0.47, p = 0.03)

iExosomes

iExosomes for delivery of siRNA targeting mutant KRAS

- Package anti-KRAS^{G12D} siRNA into artificial iExosomes
 - Exosomes are more resistant to ingestion by macrophages in circulation than lipsosomes
 - iExosomes preferentially accumulate in liver, pancreas and lungs
- Increased macropinocytosis in KRAS mutant cells => increased uptake of iExosomes
- No toxicity seen; no effect on KRAS WT cells

Complex microenvironment

The complex microenvironment of pancreatic cancer

Desmoplastic stroma

Prominent Desmoplastic Stroma in Pancreatic Cancer

Cancer associated fibroblasts

Cancer associated fibroblast (CAF) heterogeneity and stromal targeting in PDAC

Tumor secreted Ligands TGF-β and IL-1 promotes CAF heterogeneity

Targeting distinct Fibroblast niche- Tumor Promoting Inflammatory CAF

Tumor heterogeneity

Tumor Heterogeneity and Molecular Subtypes

PDAC subtypes

How many subtypes of PDAC are there?

Exocrine-

Classical subtype

Classical subtype responds better to chemotherapy

Waterfall plot: how deep is the response? "Deep" = the tx shrinks the tumor a lot

Swimmer plot: how durable?

Chromosome structure

Variations in Chromosomal Structure and PDAC Subtypes

Stroma specific subtypes

Stroma-Specific Subtypes in Pancreatic Cancer

Moffitt et. al., Nature Genetics, 2015

Metabolic reprogramming

Metabolic Reprogramming in Pancreatic Cancer

Is this a treatment target?

Stellate cells

Pancreatic stellate cells support tumor metabolism

RAS/MAPK

Co-targeting of RAS/MAPK pathway and autophagy

Trametinib plus HCQ

Trametinib (MEK inhibitor) + HCQ (autophagy inhibition)

Kinsey, C et. al, Nat. Med., 2019

Drug delivery

Treatment Strategies to Improve Disease Outcome

Drug Delivery and Effectiveness of Systemic Therapy

Targeting Stroma

Mouse model

Pancreatic Cancer Mouse Model (KPC)

*LSL-Kras-G12D X p53 LSL R172H X Pdx-Cre 1

Pancreatic Ductal Adenocarcinoma (PDAC)

(Median Survival = 4-5 months)

H&E

^{*}Hingorani, S. et. al., Cancer Cell, 2005

Stroma targeting

Enzymatic Targeting of Stroma Enhances Therapeutic Response

Provenzano et. al., Cancer Cell, 21, 2012

Therapeutic response

Enzymatic Targeting of Stroma Enhances Therapeutic Response

Phase II trial

PEGPH20 in Clinic (Phase II)

- Patients with advanced pancreatic cancer
- Arms:
 - Gem + nab-p
 - Gem + nab-p + PEGPH20
- No difference in PFS in the whole study population (negative)
- Pre-specifiec subgroup analysis:
 - Hyaluronin(HA) high patients

Phase 3 study was just reported negative in press release

Hedgehog signaling

Inhibition of Hedgehog Signaling Depleted Stroma, Enhanced Drug Delivery and Improved Survival in Mice

Tumor suppressor

Sonic Hedgehog as a Tumor Suppressor in PDAC

Genetically Engineered Mouse Model

Myoblast depletion

Myofibroblast depletion enhances PDAC

Overall survival

Myofibroblast depletion reduces overall survival

GCV= genciclovir (Depletes Myofibroblasts in PKT;αSMA-tk+ Mice)

Anti-stromal therapy

Two Faces of Anti-Stromal Therapy

Stromal-targeting may not (always) have beneficial therapeutic response

Tumor-Stromal interaction is complex and caution is required for therapeutic approaches targeting stroma

Mesothelin

My Research: Mesothelin-Targeted Therapy for Pancreatic Cancer

- Cancer-specific surface antigen expressed by many solid tumors
 - Mesothelioma
 - Pancreatic
 - Ovarian
 - NSCLC
 - Gastric

Endometrial

Cervical

Thymic carcinoma

Cholangiocarcinoma

- Normal expression limited to mesothelial cells
- No expression parenchyma of vital organs
- No phenotype in MSLN KO mice

MSLN expression

MSLN expression in pancreas ductal adenocarcinoma (PDA)

(C) Dancrestic	durated	adenocarcinoma	(EB2 antibody)
(C) Pancreauc	uuctal	adenocarcinoma	(SDZ amilbody)

1+ (1-25%	2+ (26-50%	3+ (>50%	Total	Reference
cells) ^s	cells)	cells)		
10/60	50/60		60/60	Argani et al. (5)*
			(100%)	
3/14	5/14	6/14	14/14	Frierson et al.
			(100%)	(2)*5
0/11	2/11	8/11	10/11	Ordonez (6)*
			(91%)	
0/14	3/14	9/14	12/14	Ordonez (1)*
			(86%)	
22/68	39/68		61/68	Swierczynski et
			(90%)	al. (7)**
2/18	1/18	15/18	18/18	Hassan et al.
			(100%)	(8)*
37/185	138/185		175/185	Total
(20%)	(75%)		(95%)	prevalence
	0/14 0/14 0/14 22/68 2/18	cells) cells) 10/60 50 3/14 5/14 0/11 2/11 0/14 3/14 22/68 39 2/18 1/18 37/185 138	cells) cells) cells) 10/60 50/60 3/14 5/14 6/14 0/11 2/11 8/11 0/14 3/14 9/14 22/68 39/68 2/18 1/18 15/18 37/185 138/185	cells) ^S cells) cells) 10/60 50/60 60/60 (100%) 3/14 5/14 6/14 14/14 (100%) 0/11 2/11 8/11 10/11 (91%) 0/14 3/14 9/14 12/14 (86%) 22/68 39/68 61/68 (90%) 2/18 1/18 15/18 18/18 (100%) 37/185 138/185 175/185

MSLN threapeutics

MSLN-targeted therapeutics in the clinic

Recombinant immunotoxin

Recombinant Immunotoxin (iTox)

Mechanism of action

Mechanism of Action

LMB-100 plus paclitaxel

LMB-100 works with nab-paclitaxel to eliminate PDAC tumors

Active regimen

LMB-100 + NAB-paclitaxel is an active regimen

Better response is associated with higher MSLN expression in archival tissue

Anti-drug antibody

Alewine et al, in press Clin. Canc. Res.

Peak serum levels of LMB-100 are limited by anti-drug antibody formation beginning with Cycle 2

Decreasing ADA

Decreasing ADA formation with tofacitinib

- Janus kinase (JAK) inhibitor
- Inhibits lymphocyte signaling
- FDA approved for treatment of autoimmune diseases
- Limits formation of ADAs against iTox in mice

Tofacitinib

Additional effect of tofacitinib: increased anti-tumor efficacy through stromal modulation

Tofacitinib treatment

- Reduces macrophage population in tumors
 - Less non-specific uptake of iTox in tumor by macrophages
- = > Increases iTox serum half-life
- => Increases iTox delivery to tumor

Tocacitinib + LMB-100

Phase I: tofacitinib + LMB-100

- Dose escalation to determine maximum tolerated dose
 - MSLN(+) solid tumors

Now accruing!

- Expansion phase to assess impact on ADA formation
 - Pancreatic adenocarcinoma
 - extrahepatic cholangiocarcinoma

Tofacitinib (T) LMB-100 10 mg PO, BID as per dose escalation CT = imaging

BX = optional tumor biopsy

ADA = anti-drug antibody titer

Questions?

Questions?